Selectivity in the homolytic reduction of polyhaloalkanes with organosilicon hydrides*

Encouraged by recent developments in the chemistry of organosilicon free radicals¹⁻¹⁰, we have recently reported^{11,12} that the reduction of carbon tetrachloride by triorganosilicon hydrides in the presence of benzoyl peroxide proceeds through a free radical chain mechanism as is shown in eqns. 1–4**, where In• is a radical produced from the initiator. The chains are moderately long, the reaction proceeding satisfactorily in the presence of about one mole per cent of the initiator¹¹. As part of a general study of reactions of organosilicon hydrides^{11,12,14} we now describe observations on aspects of selectivity in this reduction reaction.

In the present investigation, various polyhaloalkanes were treated with tri-

Halide	Silane	Product	
CH ₂ ClCHCl ₂	Et ₃ SiH	CH ₂ ClCH ₂ Cl	(100)
	_	CH ₃ CHCl ₂	(-)
CH ₂ ClCHCl ₂	PhMe ₂ SiH	CH ₂ ClCH ₂ Cl	(100)
		CH ₃ CHCl ₂	(-)
CH ₂ ClCCl ₃	Et ₃ SiH	CH ₂ ClCHCl ₂	(100)
		CH ₃ CCl ₃	(-)
CH ₂ ClCCl ₃	PhMe ₂ SiH	CH ₂ ClCHCl ₂	(100)
		CH ₃ CCl ₃	(-)
CHCl ₂ CCl ₃	Et ₃ SiH	CHCl ₂ CHCl ₂	(98)
		CHClCCl ₃	(2)
CHCl ₂ CCl ₃	PhMe ₂ SiH	CHCl ₂ CHCl ₂	(98)
	-	CHCICCl ₃	(2)
CH₂CICHCICH₂CI	PhMe₂SiH	CH ₂ CICHCICH ₃	(25)
		CH ₂ ClCH ₂ CH ₂ Cl	(75)
CHClBrCHClBr	PhMe ₂ SiH	CHCI=CHCI	(74)
		CHClBrCH ₂ Cl	(26)
		CH ₂ BrCHClBr	(-)
CFCl ₂ CF ₂ Cl Cl(CH ₂) ₄ Br	PhMe ₂ SiH	CHFCICF ₂ Cl	(100)
		CFCl ₂ CHF ₂	(-)
		CHCl ₂ CF ₂ Cl	()
	PhMe ₂ SiH	n-BuCl	(98)
		n-BuBr	(2)
ClCH ₂ CH ₂ Br	PhMe ₂ SiH	CH ₃ CH ₂ Cl	(100)
BrCCl ₃	DEMO SIL	CH ₃ CH ₂ Br	()
	PhMe ₂ SiH	CHCl ₃	(75)
		CHBrCl ₂	(25)

TABLE I. PRODUCT DISTRIBUTION IN THE REDUCTION OF POLYHALOALKANES (80°	', 10h) ^a ∙⁰
--	-------------------------

^a Each of the experiments was carried out in a sealed tube which was kept in a constant temperature bath. ^b Analyses were made by means of vapor phase chromatography (Silicone Rubber, QF-1).

^{*} Presented in Part at the Symposium of Organometallic Chemistry, Osaka, October 11, 1966.

^{**} The proposed scheme has been further supported by the formation of 1,2-dicyclopropyltetramethyldisilane in the reaction of cyclopropyldimethylsilane with di-tert-butyl peroxide¹³.

$$(C_6H_5COO)_2 \rightarrow 2 \text{ In}^{\bullet}$$
 (1)

$$In^{\bullet} + R_{3}SiH \rightarrow InH + R_{3}Si^{\bullet}$$
⁽²⁾

$$R_3Si^{\bullet} + CCl_4 \rightarrow R_3SiCl + Cl_3C^{\bullet}$$
(3)

$$Cl_3C^{\bullet} + R_3SiH \rightarrow CHCl_3 + R_3Si^{\bullet}$$
 (4)

ethylsilane or phenyldimethylsilane in the presence of benzoyl peroxide. Table 1 summarises the product distributions as determined by vapour phase chromatographic analysis and it will be seen that the reactivity of the halogen atoms falls in the order: Br > Cl > F. This sequence is in accord with that found in homolytic reduction by organotin hydrides¹⁵.

The reactivity sequence $Cl_3C > Cl_2HC > ClCH_2$ also applies, which means that stepwise reduction of carbon tetrachloride to methane can be carried out with reasonably good yields¹⁶.

The greater reactivity of the chloromethylene group over the chloromethyl groups in 1,2,3-trichloropropane is consistent with the reactivity sequence found by Young and his co-workers in the photochemical reduction⁶ of alkyl chlorides with trichlorosilane *viz*. tertiary C-Cl > secondary C-Cl > primary C-Cl. The polar effects of substituents¹² may also play a role, in this case resulting in the preferential attack on the chloromethylene group by the electron-donating organosilicon free radicals.

The vicinal dibromide, 1,2-dibromo-1,2-dichloroethane undergoes the radical debromination in preference to halogen-hydrogen exchange. Rather similar results have been observed by Kuivila and Menapace¹⁵ for the organotin hydride reduction. The reversibility of the halogen atom addition to olefins¹⁷ is presumably responsible for such homolytic eliminations.

Department of Chemistry	YOICHIRO NAGAI
Gunma University,	Kazuo Yamazaki
Kiryu, Gunma (Japan)	Isao Shiojima -

- 1 C. EABORN, R. A. JACKSON AND R. W. WALSINGHAM, Chem. Commun., (1965) 300.
- 2 A. G. BEAUMONT, C. EABORN, R. A. JACKSON, R. W. WALSINGHAM, J. Organometal. Chem., 5 (1966) 297.
- 3 C. EABORN, I. M. T. DAVIDSON AND C. J. WOOD, J. Organometal. Chem., 4 (1965) 489.
- 4 A. G. BFAUMONT, R. W. BOTT, C. EABORN AND R. A. JACKSON, J. Organometal. Chem., 6 (1966) 671.
- 5 J. A. KERR, D. H. SLATER AND J. C. YOUNG, J. Chem. Soc., (A), (1966) 104.
- 6 J. A. KERR, B. J. A. SMITH, A. F. TROTMAN-DICKENSON AND J. C. YOUNG, Chem. Commun., (1966) 157.
- 7 J. A. CONNOR, G. FINNEY, G. L. LEIGH, R. N. HASZELDINE, P. J. ROBINSON, R. D. SEDGWICK AND R. F. SIMMONS, *Chem. Commun.*, (1966) 178.
- 8 I. M. T. DAVIDSON AND I. L. STEPHENSON, Chem. Commun., (1966) 746.
- 9 G. G. HASS, F. W. LAMPE AND L. H. SOMMER, J. Am. Chem. Soc., 87 (1965) 5327.
- 10 H. SAKURAI, R. KOH, A. HOSOMI AND M. KUMADA, Bull. Chem. Soc. Japan, 39 (1966) 2050.
- 11 Y. NAGAI, K. YAMAZAKI, N. KOBORI AND M. KOSUGI, J. Chem. Soc. Japan, (Pure Chem. Sect.), 88 (1967) in press.
- 12 Y. NAGAI, K. YAMAZAKI, I. SHIOJIMA, N. KOBORI, M. HAYASHI, J. Organometal. Chem., 9 (1967) P21.
- 13 H. SAKURAI, A. HOSOMI AND M. KUMADA, Bull. Chem. Soc. Japan, in press.
- 14 T. NAGAI, K. HONDA AND T. MIGITA, J. Organometal. Chem., 8 (1967) 372.
- 15 H. G. KUIVILA AND L. W. MENAPACE, J. Org. Chem., 28 (1963) 2165.
- 16 Y. NAGAI AND I. SHIOJIMA, unpublished work.
- 17 C. WALLING, Free Radicals in Solution, Wiley New York, 1957, p. 302.

Received June 5th, 1967.

J. Organometal. Chem., 9 (1967) P25-P26